Bioenergetics of Phosphate

Inorganic pyrophosphate (PPi) is the simplest molecule capable of incorporating the POP pyrophosphate bond, the chemical structure used by all living beings to store and dispose of the chemical bond energy. The PPi is generally regarded as a byproduct of metabolism without value for the cell, but recent studies -in which our group, among others, was involved- indicate that a growing number of organisms (many bacteria, archaea and protists, and all photosynthetic eukaryotes) are able to use PPi as a key metabolite in a "low cost" bioenergetics that would constitute an adaptive advantage under circumstances that chronically depress the cell energy status. Through various bioengineering strategies our group is currently changing the PPi metabolism in yeast and animal cells by using proteins of plant and microbial origin with biotechnological and biomedical purposes, so that those organisms be capable of utilizing PPi as a sustainable energy source, alternative to ATP, under conditions of stress.

Selected publications:

  • Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases (pdf)   PNAS 2002 Vol. 99 p.15914-15919
  • A plant proton-pumping inorganic pyrophosphatase functionally complements the vacuolar ATPase transport activity and confers bafilomycin resistance in yeast Biochemical Journal 2011 Vol.437 p.269-278 
  • Inorganic pyrophosphatase defects lead to cell cycle arrest and autophagic cell death through NAD+-depletion in fermenting yeast (pdf)  JBC 2013 Vol.288(18) p.13082-13092
  • 8-Dehydrosterols induce membrane traffic and autophagy defects through V-ATPase dysfunction in Saccharomyces cerevisiae  Biochimica et Biophysica Acta - Molecular Cell Research 2015 Vol.1853 p.2945-2956

- Bioenergetics and metabolism of inorganic pyrophosphate and polyphosphates in photosynthetic organisms and extremophilic microorganisms.
- Pyrophosphate-dependen primary ion pumps.
- Structure and function of energy-transducing proteins.
- Polyphosphates roles in the stress response of photosynthetic organisms.
- Acidification of endocellular compartments: relationship with apoptosis, autophagy and cell proliferation.
 

Ministerio de Ciencia e Innovación, PN I+D/BFV (convocatorias 2004, 2007, 2010), Proyecto de Execelencia de la Junta de Andalucía (convocatoria 2007), Ayudas a grupos PAIDI (2009, 2010), Cooperación Internacional (AECID, MAEC, 2008-2012)
Selected Publications
Type: Publications in journals
The H+-Translocating Inorganic Pyrophosphatase From Arabidopsis thaliana Is More Sensitive to Sodium Than Its Na+-Translocating Counterpart From Methanosarcina mazei
Authors: Pérez-Castiñeira, J.R., Serrano, A.
Publication Year: 2020
Pages: https://doi.org/10.3389/fpls.2020.01240
Journal: Front. Plant Sci.
Volume: 11
Type: Publications in journals
Nuclear proteasomal degradation of Saccharomyces cerevisiae inorganic pyrophosphatase Ipp1p, a nucleocytoplasmic protein whose stability depends on its subcellular localization
Authors: Serrano-Bueno, G., Madroñal, J.M., Manzano-López, J., Muñiz, M., Pérez-Castiñeira, J.R., Hernández, A., Serrano, A.
Publication Year: 2019
Pages: 1019-1033
Journal: Biochimica et Biophysica Acta
Volume: 1866(6)
Patentes
Uso de secuencias nucleotídicas que codifican pirofosfatasas translocadoras de protones para producir levaduras, hongos y células animales resistentes a fármacos citotóxicos y fungicidas y método para producirlas
Inventors: Serrano, A., Hernández, A., Pérez-Castiñeira, J.R.
Date: 20/05/2013
Uso de secuencias nucleotídicas que codifican pirofosfatasas translocadoras de protones para producir levaduras, hongos y células animales resistentes a fármacos citotóxicos y fungicidas y método para producirlas
Inventors: Serrano, A., Hernández-López, A. y Pérez-Castiñeira, J.R.
Date: 25/05/2011